

LH2 ABSORBER R & D AT FERMILAB

BNL, Feb. 2, 2001

M.A.C. Cummings NIU

LH2 ABSORBER R & D MOTIVATION

- → Driving Issues
 - 1. Minimize beam scattering
 - * Largest possible $L_R \Longrightarrow$ choose LH2
 - * Much work towards optimizing window thickness
 - 2. Remove large dE/dx heat
 - * Drives most of the absorber design
 - * Operation in a confined and complex environment
 - 3. Too complicated to simulate completely
 - must build prototypes and set up engineering runs.

R & D PROGRAM

→ Final cooling channel design components are not yet determined. Need to factorize major design concerns independent of the particular channel parameters

1. Windows

- Develop a suitable window design and flange system to satisfy cooling channel requirements and mechanical stability
- * Precision dimensional measurement
- * Instrumented strain tests and FEA confirmation

2. Manifold

- Internal configuration for LH2 flow
- Non-cryo fluid flow tests
- * Temp, pressure and flow monitoring
- * Sufficient mechanical failsafes

3. Refrigeration

* Heat exchange between LH2 and helium systems

LH2 ABSORBER DESIGN

→ Different lattice designs require different absorber dimensions:

CONFIG/ PARAM	Single Flip	FOFO1	FOFO2	units
Length	30	12.6	13.2	cm
Radius	20	15	10	cm
Volume	38	9	4	liters

→ Energy/second deposited for all absorber shapes and muon momenta is O(100) Watts:

p _μ		dE/dx	<∆E>	<p> (4×10¹² @15 Hz)</p>
	Mev/c	$Mev/(g/cm^2)$	Mev	Watts
30 cm-{	106	6.0	13	183
	211	4.2	5.6	128
	317	4.1	5.5	125
12.6 cm-{	106	6.0	3.4	77
	211	4.2	2.4	54
	317	4.1	2.3	53

TWO LH2 ABSORBER DESIGNS

→ External heat exchange:

SLAC E158 ~500W

Small beam width small scale turbulence

Establish transverse turbulence with fine mesh screens

→ Internal heat exchange:

Output from 2-dimensional Computational Fluid Dynamics (CFD) calcs. illustrate the concept. (K. Cassel, IIT)

Streamlines indicate greatest flow near beam center.

BOTH DESIGNS NEED PROTOTYPING

Both need to handle ~ 6W/cm heat deposition.

Neither easily simulated - essentially 3D problem.

LH2 ABSORBER HEAT EXTRACTION

External heat exchange:

→ Internal heat exchange:

MUCOOL ~ 100W (E. Black, IIT)

Large and variable beam width large scale turbulence

Establish transverse turbulent flow with nozzles

For ~ 6W/cm heat deposition, need to cycle 0.05 volumes/sec LH2 (e.g. 180W/30cm).

Convection cell is driven by heater.

Heat exchange via helium tubes near absorber wall.

Flow is intrinsically transverse.

CHALLENGES:

- FORCED-FLOW: Nozzle design is complicated, hard to simulate.
- CONVECTION: Studies are encouraging, but there is a poorly known parameter: h_{LH2} , coefficient of convective heat transfer.

WINDOW DESIGN

→ Increased thickness near window edges can further reduce the minimum window thickness near beam:

ANSYS Finite Element Analysis, Zhizing Tang, FNAL:

- → Operational LH2 gas pressure
 - Current FNAL recommendations ~ 2atm; prevents line freezing and air flow (**xxygen****) into LH2.
 - Lower pressure (hence thinner windows) may be possible
 R & D required.

REFRIGERATION SYSTEMS

→ For forced-flow absorber:

→ For convection absorber:

RECENT DEVELOPMENTS

Successful Window Fabrication

- Four modified torospherical window/flange units produced from U Miss
- · Dimensional measurements proceeding
- Over-pressure test setup construction underway

Instrumentation

- U. Chicago (M. Oreglia) developing bolometric methods of luminosity measurements
- Plans to implement this in the absorber design as early as the overpressure tests

New research efforts on convection model

- KEK collaborators, Yoshi Kuno and Shigeruson Itomoro have design for full cryogenic test of convection concept
- Plans to integrate this into second cryogenic absorber test

New test beam site off of the FNAL Linac

- Despite additional up-front costs, this combines assembly phase and test beam efforts.
- Boosts efforts to integrate instrumentation into
- Big step toward integration

LH2 PROJECT TIMELINES (NEW)

→ R & D program:

- Overpressure window test (FNAL requirement) (IIT/NIU/UMiss)
- 2. Fluid flow tests (IIT/NIU/FNAL)
- 3. Cryogenic LH2 absorber assembly, instrumentation and tests (IIT/NIU/UIUC/FNAL/KEK)

LH2 ABSORBER R & D AND THE PROPOSED TEST FACILITIES

→ Current plan:

- Dedicated area for Mucool component testing
- Two phases of construction and use:
 - 1) LH2 construction and test (no beam)
 - 2) RF/Solenoid/LH2 high-powered tests (beam)

→ Current goals (LH2):

- Build absorber prototypes and integrate into instrumented cryo systems
- Developing monitoring instrumentation
- Develop beam instrumentation: ?
 - 1) DE/dx ...
 - 2) Anything compatible proton/muon (charged particles)
- · Integration with other components

→ Current goals - the rest:

- Solenoids (S.C.)
- RF
- Cooling Cell

INSTRUMENTATION CHALLENGES

- → Approaches what this means for the LH2 absorber
 - Non contact
 - 1) Heat detection
 - 2) Cerenkov/transition radiation/decay products
 - Non contact/component-altering
 - 1) Scintillation
 - 2) Lasers/Schlieren techniques
 - Contact/component-altering
 - 1) VLPC's, pick-ups,
 - 2) Bolemetry/calorimetry
 - Beam altering
 - 1) Faraday cups
 - 2) Low/mass profile

→ Engineering:

- Realistic fit
 - 1) Physical space
 - 2) Radiation hardness
- Component-altering
- Read-out

WHAT CAN BE DONE WITH ~1013 H-'s?

- Possible next-year activities
 - > dE/dx
 - 1) Luminosity
 - 2) Monitoring
 - 3) Lasers/Schlieren techniques possible Convection absorber necessity NEED A WINDOW
 - Charge
 - 1) Scintillation
 - 2) Backgrounds
 - Component re-design
 - 1) VLPC's, pick-ups, feedthrough, attachment
 - 2) Bolemetry/calorimetry. Window design.
 - Direct/indirect beam measurements
 - 1) Any thing we can find out?
 - 2) Low/mass profile-type
- \rightarrow Reasons for going ahead with non- μ 's:
- We can start to weigh info desirability with doability
- Read-out
- Early component re-design and cooling cell alterations

SUMMARY

- Ambitious program, but critical to demonstrating the feasibility of building a cooling channel.
- Much engineering and study has already gone into the major design issues. Windows have materialized! Initial phases of the project are happening NOW.
- Illinois University Consortium (ICAR) has State
 of Illinois \$\$ to provide the scientific staff and
 additional equipment to carry out this project.
- The support of FNAL has always been key to move this project forward. In particular, was the issue of a dedicated AREA, and LINAC test beam facility is a major contribution. The collaborating universities will necessarily be working closely with FNAL experts to satisfy stringent safety requirements. We're finally forced to do something.